Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- Vit
- transformer
- video editing
- research intern
- 3d generation
- BOJ
- 프로그래머스
- VirtualTryON
- 3d editing
- image2image translation
- plug-and-play
- diffusion
- magdiff
- image generation
- diffusion models
- ddpm inversion
- 논문리뷰
- prompt2prompt
- ami lab
- Python
- image editing
- 네이버 부스트캠프 ai tech 6기
- visiontransformer
- DP
- video generation
- Programmers
- style align
- 코딩테스트
- 코테
- ddim inversion
Archives
- Today
- Total
목록dreamgaussian (1)
평범한 필기장
[평범한 학부생이 하는 논문 리뷰] DreamGaussian : Generative Gaussian Splatting for Efficient 3D Content Creation (ICLR 2024 oral)
https://arxiv.org/abs/2309.16653 DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content CreationRecent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practiarxiv.org1. Introduction 최근 3D ..
AI/3D
2024. 7. 2. 11:52