Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 코딩테스트
- image editing
- emerdiff
- visiontransformer
- VirtualTryON
- BOJ
- DP
- transformer
- dreammotion
- score distillation
- segmentation map
- Python
- 3d generation
- segmenation map generation
- diffusion models
- controlnext
- diffusion model
- controllable video generation
- Vit
- 3d editing
- video generation
- 프로그래머스
- 논문리뷰
- diffusion
- 코테
- Programmers
- 네이버 부스트캠프 ai tech 6기
- video editing
- magdiff
- masactrl
Archives
- Today
- Total
목록dreamgaussian (1)
평범한 필기장
[평범한 학부생이 하는 논문 리뷰] DreamGaussian : Generative Gaussian Splatting for Efficient 3D Content Creation (ICLR 2024 oral)
https://arxiv.org/abs/2309.16653 DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content CreationRecent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practiarxiv.org1. Introduction 최근 3D ..
AI/3D
2024. 7. 2. 11:52