Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- diffusion model
- 코딩테스트
- masactrl
- video generation
- visiontransformer
- 네이버 부스트캠프 ai tech 6기
- 논문리뷰
- 3d generation
- video editing
- Vit
- dreammotion
- 3d editing
- transformer
- magdiff
- image editing
- score distillation
- emerdiff
- segmenation map generation
- DP
- segmentation map
- BOJ
- Python
- diffusion
- 프로그래머스
- diffusion models
- controllable video generation
- controlnext
- 코테
- VirtualTryON
- Programmers
Archives
- Today
- Total
목록dreamgaussian (1)
평범한 필기장
[평범한 학부생이 하는 논문 리뷰] DreamGaussian : Generative Gaussian Splatting for Efficient 3D Content Creation (ICLR 2024 oral)
https://arxiv.org/abs/2309.16653 DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content CreationRecent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS). Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practiarxiv.org1. Introduction 최근 3D ..
AI/3D
2024. 7. 2. 11:52