일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- VirtualTryON
- memorization
- 3d editing
- image editing
- BOJ
- segmentation map
- masactrl
- Python
- video generation
- 네이버 부스트캠프 ai tech 6기
- 3d generation
- diffusion models
- inversion
- segmenation map generation
- 프로그래머스
- diffusion model
- 논문리뷰
- 코테
- DP
- flipd
- 코딩테스트
- Programmers
- diffusion
- transformer
- noise optimization
- visiontransformer
- rectified flow
- Vit
- video editing
- flow matching
- Today
- Total
목록AI (62)
평범한 필기장

기존 vanilla GAN이 가지는 한계점 학습이 불안정적이다. 불안정적으로 학습이 되다보니, Generator와 Discriminator사이의 힘의 균형이 깨져 한쪽이 계속 이겨버리는 상황이 발생한다. 그러다 보니 Generator가 종종 어처구니없는 이미지를 생성하게 된다. 결국 우리가 원하는 결과를 얻을 수 없게 된다. mode collapse GAN에서 Generator는 Discriminator를 속이는 방향으로 학습이 되는데 그러다 보니 데이터가 많은 이미지만 계속해서 생성하게 된다. 이렇게 되면 Discriminator를 속이는 것은 맞지만 다양한 이미지를 생성하는 것과는 맞지 않게 된다. Black-Box 방식 왜 이런 결과가 나왔는지 알 수 없다. 어떤 특징 때문에 이런 이미지가 생성됐는..

3-2학기 학부연구생을 하면서 처음으로 읽게 된 논문이 바로 이 Generative Adversarial Nets라는 논문인데, 딥러닝 기초만 조금 봐본 제가 공부하면서 정리하는 느낌으로 하는 리뷰이니 틀린 부분, 잘못 이해한 부분이 많을 수 있다는 점 말씀드리고 리뷰 시작해보도록 하겠습니다! 0. Abstract 일단 이 논문의 abstract에서는 저자들이 두 개의 모델을 적대적인 process로 학습시켜서 생성 모델을 평가하는 프레임 워크를 목적으로 했다고 밝혔다. 여기서 두 개의 모델은 생성 모델인 G와 판별 모델인 D로 설명을 했다. generative model G : 데이터의 분포를 모사해 D가 실수할 확률을 최대화하는 방향으로 학습 discriminative model D : sample ..