Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- controlnext
- visiontransformer
- diffusion
- video editing
- controllable video generation
- dreammotion
- 프로그래머스
- magdiff
- Python
- style align
- 논문리뷰
- 3d generation
- 3d editing
- transformer
- video generation
- diffusion models
- Vit
- segmenation map generation
- diffusion model
- score distillation
- DP
- image editing
- BOJ
- 네이버 부스트캠프 ai tech 6기
- segmentation map
- VirtualTryON
- 코테
- emerdiff
- 코딩테스트
- Programmers
Archives
- Today
- Total
목록syncnoise (1)
평범한 필기장
[평범한 학부생이 하는 논문 리뷰] SyncNoise : Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing (arXiv 2406)
https://arxiv.org/abs/2406.17396 SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene EditingText-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiplearxiv.org1. Introduction I..
AI/3D
2024. 7. 6. 13:41