Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- controlnext
- segmentation map
- DP
- diffusion model
- Programmers
- 3d editing
- segmenation map generation
- magdiff
- transformer
- Vit
- video generation
- 3d generation
- image editing
- 코딩테스트
- 프로그래머스
- BOJ
- diffusion
- dreammotion
- video editing
- 코테
- Python
- emerdiff
- controllable video generation
- 네이버 부스트캠프 ai tech 6기
- style align
- visiontransformer
- diffusion models
- score distillation
- 논문리뷰
- VirtualTryON
Archives
- Today
- Total
목록syncnoise (1)
평범한 필기장
[평범한 학부생이 하는 논문 리뷰] SyncNoise : Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing (arXiv 2406)
https://arxiv.org/abs/2406.17396 SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene EditingText-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiplearxiv.org1. Introduction I..
AI/3D
2024. 7. 6. 13:41